Secure Communication with Master and Outstation over DNP3.0

Protocol
Introduction:

OpenDNP3 was released as open-source library. Originally OpenDNP3 was written in C++ which was a
reasonable choice to write a platform independent library that needed to run efficiently on embedded
Linux. Over time, .NET and Java bindings were added to integrate with more products and platforms. For
our project we will be using the original C++ written OpenDNP3, the reason is that C++ is very old,
complex, and error prone. Writing asynchronous C++ has always been extremely error prone. However,
an extra layer of security with developer’s involvement is always needed, so we use the TLS for this
added layer of security.

Firstly, we will explain how the implementation of DNP3 open protocol from GitHub and TCP
communication. Secondly, configuration changes according to the testbed which will be used will be
explained, and in the third, the implementation of TLS — the creation of keys and certificate will be
explained using the OpenSSL. In the fourth, the implementation of verifying the entity using a certificate
and private key will be explained. Lastly, we will show the design and results of the implementation of
the certificate and key. The evaluation of the design will show the screenshots of every step of outputs in
the execution phase.

Test Environment:

We have made our environment using LINUX based operating system — Raspbian, running on Raspberry
P1 3 with Wireless Area Network (WAN). Our hierarchical model consists of multiple master/outstations
like architecture in SCADA systems, and Raspberry Pl can run as an embedded system. The Raspberry Pi
is a low cost, credit-card sized computer that can be plugged into a computer monitor or connected over
SSL and Putty and uses a standard keyboard and mouse. It is compatible to manipulate the Pi using
multiple libraries which are application specific and scripting languages like Python.

w2
CC 1D: 2ABCB-RPI32
1C: 20053-RPI32

» HEIm

Fig 1.1: Raspberry Pi

For our implementation we have opted Opendnp3 which is a reference to DNP3 (IEEE-1815) protocol,
and it is an open source from GitHub “”. It uses Automatak from the open source DNP3. Firstly, we have
used C++ version of DNP3 with GCC and G++ compilers and to build the DNP3 in the system we have
used CMAKE. The next step after this is to use ASIO as a cross-platform for input and output
communication for the Linux. First thing we did is the TCP architecture that are already available in te
examples provided by the open source DNP3. TCP/IP connection is shown below:

u I u

WIFI Router —

For the next part in the architecture our plan is to generate the keys and digital certificates over TLS
communication. PKI infrastructure is widely used on the internet for many applications. In our
architecture we have a digital certificate and private key generated at master and slave. Each entity has a
public certificate, private key, and a peer certificate to verify the file transfer.

Peer Public Private Peer Public Private
Certificate Certificate Key Certificate Certificate Key

Configuration:

Configuration of DNP3 is the important process of changing the source code according to our
implementation. Both the raspberry pi’s will be connected over the same network. Firstly, the main.cpp
program is manipulated by changing the IP addresses. Master’s main.cpp consists of outstation’s I[P
address and the port number. Outstation’s main.cpp consists of master’s IP address as the peer and
outstation’s IP address as the local device. The next configuration is to manipulate the TLSconfig.cpp
program in the opensource OpenDNP3. The basic configuration in this is adding the path of the peer
certificate, public certificate, and private key. Peer certificate for master will be Outstation’s certificate
and vice versa. Public certificate and private key are generated individually for each raspberry pi.
Certificates and private key are stored in a folder called certificates.

Implementation:

Implementation of this architecture is with the use of openSSL on DNP3 Secure Authentication. The
implementation is explained in the following architecture. The first part is in master’s perspective,
although both master and certificate have three files that are peer certificate, public certificate and private
key, master has its own public certificate and private key. The peer certificate is the outstation’s public
certificate which is shared by outstation over wireless local area network. All these file paths are changed
in the TLSConfig.cpp program in the OpenDNP3 opensource code.

After changing the code, the program is executed by CMAKE. After the make command, the demo files
are created. The demo files are executed for our operation.

The second part is in outstation’s perspective, which has the same architecture as master. After generation
of the key’s, the pem files are generated.

Evaluation:

In this section, we present the simulation results over the infrastructure. Using the architecture that we
explained earlier, we show the master communicating with outstation and verifying the public certificate.
After verifying, the password for the private key will be given for the communication. This TLS
connection will be shown.

@ [ﬁ ! r_—‘masier @main.cpp—lhomelp'

File Edit Search View Document Project Build Tools Help

-8B~ 4@ @ X 9 -9

| 49 s m

~ g Functions 36 :cout << "Usage: master-tls-demo <peer certificate> <local certificate> <private key>" << std::el -
Hmain [32] ;7’ return -1;|
~ ¢ Extern Variables a9
@ opendnp3 [30] 40 std::string peerCertificate(argv[1]);
ostd (291 a1 ::string localCertificate(argv(2]);
42 tring privateKey(argv[3]);
43
a4 std::cout << "Using peer cert: " << peerCertificate << std::
a5 local cert: " << localCertificate << std
46 std::cout << "Using private key files: " << privateKey << std::e
a7
a8 7/ Specify what log levels to use. NORMAL is warning and above
a9 // You can add all the comms logging by uncommenting below
50 const auto loglevels = levels::NORMAL | levels::ALL_APP_COMMS;
{53
52 // This is the main point of interaction with the stack
53 // send log messages to the console
54 DNP3Manager manager (1, Consolelogger::Create());
55
56 fation
57 auto channel = manager.AddTLSCLient(
58 "tls-client”, loglevels, ChannelRetry::Default(), {IPEndpoint('192.168.1.96", 8888)}, "192.168.1.100",
59 TLsconfig(peerCertificate, localCertificate, privateKey), PrintingChannellListener::Create());
60
61 // The master config object for a master. The default are
62 // useable, but understanding the options are important.
63 MasterStackconfig stackConfig;
64
65 // you can override application layer settings for the master here
66 // in this example, we've change the application layer timeout to 2 seconds
67 stackConfig.master.responseTimeout = TimeDuration::Seconds(2};
68 stackConfig.master.disableUnsolOnStartup = true;
69
70 // You can override the default link layer settings here
71 // in this example we'vUsing peer cert: e changed the default link layer addressing
72 stackConfig. link.LocalAddr = 1;
73 stackConfig. link.RemoteAddr = 10;
74
75 auto soeHandler = PrintingSOEHandler::Create();
76
77 // Create a new master on a previously declared port, with a -
4 »
- 23:29:57: This 1is Geany 1.33.
Status ~ 23:29:57: setting spaces indentation mode for /home/pi/dnp3/cpp/examples/tls/master/main.cpp.
23:29:57: Setting Spaces indentation mode for /home/pi/dnp3/cpp/examples/tls/master/main.cpp.
Compiler |23:29:57: File /nome/pi/dnpa/cpp/exanples/t1s/master/main.cop opened(1).
= 23:29:57: Setting Spaces indentation mode for /home/pi/dnp3/cpp/Lib/include/opendnp3/channel/TLSConTig.n.

line:37 /155 col:18 sel:0 INS SP mode:LF encoding:UTF-8 filetype:C++ scope:main

Fig 1.2: IP Change in Master main.cpp

File Edit Search View Document Project Build Tools Help

o ~-a -

j Symbols t
- o Functons
& Addupdatss [
& Addupdatss |

@ opendnp3 [33)
@std [32]

F B x S e - B 110 ! B+

3 7 @) 2336

TLSConfigh X | maincpp x
& img

" << peercertificate << std::
<< localCertificate << std
<< privateKey << std::endl;

/7 Specify what log levels to use, NORMAL is warning and above
/7 You can add all the comns logging by unconmenting below.
const auto loglavels = lavels::NORMAL | levels::ALL_COMS;

/7 This is the main point of interaction with the stack
/7 Allacate a single thread to the pool since this is a single putstation
DNPIManager manager(1, Consolelogger::Create());

#f Create a TCP server (Llistemer)

auto channel = manager AddTLSServer{ <crver”, loglevels, ServerAcceptMode::CloseExisting, TPEndpoint(’ 197 95", BESB),
Tusconfig(peercertificate, localcertificate, privatekey),
PrintingChannelListener: :Create(]);

/7 The main object for a outstation. The uefau\cs are useable,
7/ but understanding the options are inpo
OutstationStackConfig sllclﬁnnf;g[(‘anl)gur:ﬂllm:se[):

/4 specify the maximum size of the event buffers
stackConfig.outstation.eventBufferconfig = EventBuffercanfig

1Types(10);

/7 you can override an default outstation parameters here

/7 in this example, we've nabled the oustation to use unsolicted reporting
7/ if the master enables

stackbonfig.outstation. parans. allownsolicited = trus:

/1 You can override the default link layer settings here
47 in this example we've changed the default Link layer addressing
stackconfig. Link.Localaddr = 1

stackConfig. Link.RemoteAddr = 1;

/7 Create a new outstation with a log level, command handler, and
/4 config info this returns a thread-safe interface used far

/7 updating the outstation's database

auto outstation = channel->Addoutstation(":

. successcommandhandler: :Create(),
Defaultoutstat ionApp Lication: ‘Create(), stackConfigl;

/7 Enable the outstation and start communications
outstation->Enable();

Setting Spaces indentation mode for /home/pi/dnp3/cpp/exanples/tls/master/main.cpp.
D FLLe /MoMe/PL/INDY/CPO/EXATOLES /L 15/RASEEr /AL CPP OPEnEd(3] .
File /home/pi/dnp3/cpp/examples/ts/naster /main cpp closed.

ling:81/170 cok125 sek0 INS SP modelF encodingUTF-8 filetype:C++ scope:main

Fig 1.3: IP Change in Outstation main.cpp

* T o) 233

Search View Document Project Build Tools Help

g-4a =2 x 9 -7

Symbols | Decuments m; pp ¥ | TLSConfigh
~ () Namespaces 33 { , “
En .
-t
1 opendnp3 [26] 35 * Construct a TLS configuration
~ & TLsconfig [32] 36 N
& TLSConfig [52] 37 * @param peercertFilePath Certificate file used te verify the peer or server. Can be CA file or a self-signed
= 38 * provided by other party.
0 3llowTLSv10 (3] 30 + @param localcertFilepath File that contains the certificate (or certificate chain) that will be presented t.
allowTLSv11 [86] 49 * remote side of the connection
allowTLSv12 [89] 41 * @param privateKeyFilePath File that contains the private key corresponding to the local certificate
allowTLSv13 [92] 42 * @param allowTLSv1e Allow TLS version 1.0 (default false)
43 * @param allowTLSv1l Allow TLS version 1.1 (default false)
& cipherList [95] 44 * @param allowTLSv12 Allow TLS version 1.2 (default true)
% localCertFilePath [77] 45 * @param allowTLSv13 Allow TLS version 1.3 (default true)
% peerCertFilePath (73] 46 * @param cipherList The openssl cipher-list, defaults to "" which does not modify the default cipher list
47 N
@ privateKeyFilePath [80] a8 * localCertFilePath and privateKeyFilePath can optionally be the same file, i.e. a PEM that contains both pie
~ 3 Macros 49 * data.
‘37 OPENDNP3_TLS_CONFIG_H [22] 58 N
51 -
52 TLSConfig(const std::stringd peerCertFilePath="/hone/pi/dnp3/certificates/outstation-cert pen',
53 stringd localCertFilePath="/home/pi/dnps/certificates/master cert.pen”,
54 ::stringd privateKeyFilePath="/home/pi/dnp3/certificates/master—key.pen”,
55 bool allowTLSv1o S=TeTEE;
56 bool allowTLSvll = false,
57 bool allowTLSviZ = true,
58 bool allowTLSV13 = true,
59 const std::string& cipherlist = "")
60 : peerCertFilepath(peerCertFilepath),
61 localCertFilePath(localCertFilePath),
62 privateKeyFilePath(privatekeyFilePath),
63 allowTLSv18(allowTLSv1e),
64 allowTLSv11(allowTLSv11),
65 allowTLsvi2(allowTLsv12),
66 allowTLSv13(allowTLSv13),
67 cipherList(cipherList)
68 {
69 1
70
71 7// Certificate file used to verify the peer or server. Can be CA file or a self-signed cert provided by other
72 717 party.
73 std: :string peerCertFilePath;
74 -
« >
- 23:29:57: This is Geany 1.33.
Status 23:29:57: Setting Spaces indentation mode for /home/pi/dnNp3/cpp/examples/tls/master/main.cpp.
23:29:57: Setting Spaces indentation mode for /home/pi/dnp3/cpp/exanples/tls/naster/main.cpp.
Compiler |23:29:57: File /home/pi/dnps/cpp/examples/tls/master/main.cop opened(1).
- 23:29:57: Setting Spaces indentation mode for /home/pi/dnpa/cpn/Lib/include/opendnp3/channel/TLSConfig.h.

line1/101 cok0 sel0 INS SP modellF encoding:UTF-8 filetype:C++ scope: unknown

Fig 1.4: Setting TLS certs path in TLSConfig on Master Raspberry Pi

File Edit Search View Document Project Build Tools Help
G-B-20 ax «-»> fe-¥Y 8

o symbois |» [Tusconfigh x [mainepp X

[+ 11 Namespaces
v 1) opendnp3 (26,
~ $TLsConfig [

* @param peerCortFilePath Certificate file used to verify the peer or server. Can be CA file or a self-signed cert
provided by other party.

@param localCertFilePath File that contains the certificate (or certificate chain) that will be presented to the
* remote side of the connection

* gparam eKeyFilePath File that contains the private key corresponding to the local certificate

* @param 10 Allow TLS version 1.0 (default false)

* @param allowTLSv1l Allow TLS version 1.1 (default false)

* @param allowTLSvi2 Allow TLS version 1.2 (default true)

@param allowTLSv13 Allow TLS version 1.3 (default tru
@param cipherList The openssl cipher-list, defaults to

* which does not modify the default cipher list

localCertFilePath and privateKeyFilePath can optionally be the same file, i.e. a PEM that contains both pieces of

{0 tepath = " t.pen”, |
trings) localCertFilepath = "/hone ertaf tar A
stringalprivateKeyFilepath = Fieat " Noi gt
bool allowTLsvio g

List

i peerCertFilePath(peercertFilePath),|
localCortFilopath(localCertFilePath),
privateKeyFilePath(privateKeyFilepath),
allowTLSv18(allowTLSv10),
allowTLsvil(allowTLsvil),
allowTLSv12(allowTLSvi2),
allowTLSvi3(allowTLSvi3),
cipherList(ciphertist)

{
}

/7/ Certificate file used to verify the peer or server. Can be CA file or a self-signed cert provided by other
/17 party
std::string peercertFilepath;

/77 File that contains the certificate (or certificate chain) that will be presented to the remote side of the
/1 connection
std::string localCertFilepath;

/// File that contains the private key corresponding to the local certificate
std::string privateKeyFilePath;

B EREE RS R RS R SR AR R]

opened(2)

Status v
—_— Setting Spaces indentation mode for /home/pi/dnp3/cpp/examples/tls/master/main. cop.
1o opened(3).
110 closed.

line:60/101 col:45 set0 INS SP modellF encoding UTF-8 filetype: C++ scope: opendnp3:TLSConfig

Fig 1.5: Setting TLS certs path in TLSConfig on Outstation Raspberry Pi

master #s3 Jmain.cpp - /homer/pi/ pi pl@raspberryp\ ~/dn.)B 23:40

raspberrypi:
raspberrypi:
raspberrypi:

spbemypi: ~/cp. [

Fig 1.6: Entering cert password for master-tls-demo and outstation-tls-demo

master ¥s3 main.cpp - /home/pi/. pi pi@raspberrypi: ~/dn.)B 23:43

File Edit Tabs Help
raspberrypi

@raspbenypi: ~/cp

Fig 1.7: Secure TLS connection between Master and Outstation Raspberry Pi

Research continuity:

After establishing the secure communication between two raspberry pi’s, data transfer from sensors is
essential. Sensor data should be transferred from slave raspberry pi to master raspberry pi over secured

DNP3 protocol. After sending sensor data over the raspberry pi’s, the next step is to compare DNP3 with
MODBUS to check for security and data integrity.

Additional work:

e Worked on research paper(Anomaly detection in smart grid) and submitted the paper to IEEE
IECON conference.

e Migrated and activated dspace license.
e Updated all the computer’s hardware and software to windows 10.
e Looking into the storage devices and hard drives available in labs.

